cossam_slc : | codice per la sintesi spettrale
nelle atmosfere magnetiche |
code
pour la synthèse spectrale
dans les atmosphères magnétiques |
lines_run.2062167039 | log file |
sysom_ess.2062167039 | essential model and abundance data |
sysom_line.2062167039 | data for all the selected lines |
sysom_stream.2062167039 | binary line data |
'-'
|
Lande factors as given in the line file; set to unity if unknown (=99.00) |
'h' or 'H' | Hydrogen line profiles according
to the analytical formula of
Hubeny
|
'-' | No hydrogen lines considered |
'0.6667' | leave unchanged
|
'a', 'A' | Stark broadening according to Gonzalez et al. 1995, A&A, 297, 223 |
'v', 'V' | Stark broadening as given in the atomic transition list file; zero if not listed |
'n',
'N' |
Stark broadening set zo zero and Unsoeld van der Waals broadening |
'-' | Oscillator strengths log gf as
given in the line
file |
'KCIB'
|
Cossam uses the Kurucz partition
functions from Atlas, leave
unchanged |
input_file | sysom_ess_extension |
any arbitrary file name is permitted, e.g. cossam_solar.inp |
the 10-digit extension of the line data files created with lines |
'Z' | Zeeman Feautrier solver (default) |
'z' | Zeeman Feautrier solver without magneto-optical terms |
'h' or 'H' | Hydrogen line profiles according to the analytical formula of Hubeny |
'-' | No hydrogen lines considered |
'file_name' | The spectrum is synthesised only over intervals of +- 1.5 Angstroem centred on each line listed in this file, located between the lower and the upper limit in lambda. |
'-' | no such selection, the spectrum is synthesised for the whole spectral region located between the lower and the upper limit in lambda. |
input_file | sysom_ess_extension |
Any arbitrary name is permitted, e.g. cossam_stellar.inp |
the 10-digit extension of the line data files created with lines |
'Z' | Zeeman Feautrier solver (default) |
'z' | Zeeman Feautrier solver without magneto-optical terms |
'h' or 'H' | Hydrogen line profiles according to the analytical formula of Hubeny |
'-' | No hydrogen lines considered |
'file_name' | The spectrum is synthesised only over intervals of +- 1.50 Angstroem centred on each line listed in this file, located between the lower and the upper limit in lambda. |
'-' | no such selection, the spectrum is synthesised for the whole spectral region located between the lower and the upper limit in lambda. |
input_file | sysom_ess_extension |
Any arbitrary name is permitted, e.g. cossam_corot.inp |
the 10-digit extension of the line data files created with lines |
'Z' | Zeeman Feautrier solver (default) |
'z' | Zeeman Feautrier solver without magneto-optical terms |
'h' or 'H' | Hydrogen line profiles according to the analytical formula of Hubeny |
'-' | No hydrogen lines considered |
'file_name' | The spectrum is synthesised only over intervals of +- 1.50 Angstroem centred on each line listed in this file, located between the lower and the upper limit in lambda. |
'-' | no such selection, the spectrum is synthesised for the whole spectral region located between the lower and the upper limit in lambda. |
No. of rings |
No. of surface elements |
8 |
80 |
15 |
284 |
24 |
732 |
40 |
2034 |
90 |
10310 |
Data start at
line 4, col 35 : ! === Comment : --------------------------------: No. of processors : 1 Atmospheric model : t12000_400_1000G_0d.fil List of spectral lines : HD326_lines.list Zeeman splitting option : - Hydrogen option : - lower-upper level limit : 0.6666667 Stark option : A Line strength option : - Partition function preferences : KCIB Lower limit in lambda [A] : 4250.0 Upper limit in lambda [A] : 5200.0 Rel. line opacity contr. limit : 0.001 Microturbulence [km/s] : 0.0 Element file : grev_sau.abund.orig : FIN |
Data start at
line 4, col 35 : ! === Comment : --------------------------------: No. of processors : 1 Atmospheric model : t12000_400_1000G_0d.fil List of spectral lines : HD326_lines.list Zeeman splitting option : - Hydrogen option : - lower-upper level limit : 0.6666667 Stark option : A Line strength option : - Partition function preferences : KCIB Lower limit in lambda [A] : 4250.0 Upper limit in lambda [A] : 5200.0 Rel. line opacity contr. limit : 0.001 Microturbulence [km/s] : 0.0 Element file : grev_sau.abund.orig : FIN Lines version : 20-06-2022 version produced by this run : 2062167039 date : 21-06-2022 18:37:19 1 H 12.00 1.008 2 : - 2 He 10.93 4.00 3 : - 3 Li 1.10 6.94 4 : - 4 Be 1.40 9.02 4 : - 5 B 2.55 10.82 4 : - 6 C 8.52 12.01 6 : - 7 N 7.92 14.01 6 : - 8 O 8.83 16.00 6 : - .... 20 Ca 6.36 40.08 5 : - 21 Sc 3.17 45.10 5 : - 22 Ti 5.02 47.90 5 : - 23 V 4.00 50.95 5 : - 24 Cr 5.67 52.01 5 : - 25 Mn 5.39 54.93 5 : - 26 Fe 7.50 55.85 5 : + 7.50 27 Co 4.92 58.94 5 : - .... 91 Pa 0.01 231.00 3 : - 92 U 0.01 238.10 3 : - ------------------------------ |
ZS A KCIB t12000_400_1000G_0d.fil HD326_lines.list 2062167039 12000.0 4.000 0.07833 0.00 9 44 45 102 514 90 4250.000 5200.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 ... .... |
Teff Log g He/H 12000.0 4.000 0.078 Microturb. = 0.00 (km/sec) 4290.219 Ti 2 5.020 -0.930 1.165 1.5 2.5 1.74 1.37 1.09 2.891 15.478 31.300 2.262E+01 4563.761 Ti 2 5.020 -0.790 1.221 0.5 1.5 0.66 0.92 0.99 1.648 15.551 31.415 2.976E+01 4558.650 Cr 2 5.670 -0.449 4.073 4.5 3.5 1.33 1.43 1.16 2.570 15.438 31.420 1.319E+02 4588.199 Cr 2 5.670 -0.627 4.071 3.5 2.5 1.24 1.38 1.06 2.570 15.465 31.420 8.806E+01 4824.127 Cr 2 5.670 -0.970 3.871 4.5 4.5 1.34 1.34 1.34 2.553 15.428 31.348 5.460E+01 4583.837 Fe 2 7.500 -1.860 2.807 4.5 3.5 1.31 1.40 1.15 4.121 15.480 31.378 6.693E+02 4923.927 Fe 2 7.500 -1.320 2.891 2.5 1.5 2.00 2.40 1.70 3.083 15.355 31.297 2.129E+03 5018.440 Fe 2 7.500 -1.220 2.891 2.5 2.5 2.00 1.87 1.93 3.062 15.359 31.297 2.705E+03 5169.033 Fe 2 7.500 -1.303 2.891 2.5 3.5 2.00 1.70 1.33 3.048 15.363 31.297 2.267E+03 |
Data start at line 4, col
35 : ! === Comment : --------------------------------: No. of processors : 1 Interval size in [A] : 0.400 Atmospheric model : t12000_400_1000G_0d.fil Formal solver option : Z Hydrogen option : - Lower limit in lambda [A] : 4923.727 Upper limit in lambda [A] : 4924.127 Step size in lambda [A] : 0.001 Element file : grev_sau.abund.orig Line selection file : - : SOLEIL Position on solar disk (mu) : 1.00 Field strength [Gauss] : 800.0 Field angle [degrees] : 60.0 Field azimuth [degrees] : 0.0 : FIN |
Data start at
line 4, col 35 : ! === Comment : --------------------------------: No. of processors : 6 Interval size in [A] : 0.100 Atmospheric model : t12000_400_1000G_0d.fil Formal solver option : Z Hydrogen option : - Lower limit in lambda [A] : 5018.140 Upper limit in lambda [A] : 5018.740 Step size in lambda [A] : 0.010 Abundance file : grev_sau.abund.orig Line selection file : - : ETOILE Incl Alp Bet Gam y_2 y_3 : 80.0 58.0 42.0 -38.0 0.105 0.105 Fmagnet Vr Phase_rot : 3000.0 5.0 0.400 Vp Phase_pul L_puls M_puls : 0.0 0.0 0 0 Del R_dop R_cos R_azi R_flux : 20.0 10.0 0.0 0.0 0.0 : FIN |
Data start at
line 4, col 35 : ! === Comment : --------------------------------: No. of processors : 6 Interval size in [A] : 0.100 Atmospheric model : t12000_400_1000G_0d.fil Formal solver option : Z Hydrogen option : - Lower limit in lambda [A] : 5018.140 Upper limit in lambda [A] : 5018.740 Step size in lambda [A] : 0.010 Abundance file : grev_sau.abund.orig Line selection file : - : CO-ROT Incl Alp Bet Gam y_2 y_3 : 80.0 58.0 42.0 -38.0 0.105 0.105 Dipole_moment Vrot No_rings : 3000.0 5.0 75 Vp Phase_pul L_puls M_puls : 0.0 0.000 0 0 No. of rotational phases : 5 Rotational phases [0<=phi<=1] : 0.0 0.2 0.4 0.6 0.8 : FIN |
1
H 12.00 1.008
2 : - 2 He 10.93 4.00 3 : - ,,,, 11 Na 6.33 23.00 6 : - 12 Mg 7.58 24.32 6 : - 13 Al 6.47 26.97 6 : - 14 Si 7.55 28.06 6 : - 15 P 5.45 30.98 6 : - .... 19 K 5.12 39.10 5 : - 20 Ca 6.36 40.08 5 : - 21 Sc 3.17 45.10 5 : - 22 Ti 5.02 47.90 5 : - 23 V 4.00 50.95 5 : - 24 Cr 5.67 52.01 5 : - Cr.noc 25 Mn 5.39 54.93 5 : - 26 Fe 7.50 55.85 5 : - 7.50 27 Co 4.92 58.94 5 : - .... |
All
elements are listed with: atomic number, element symbol, solar abundance, atomic weight, number of ionisation stages considered. To specify a different constant abundance over optical depth, enter the new value after the '-' (preceded by a blank). To specify a different non-constant abundance over optical depth, enter the name of a file after the '-' (preceded by a blank). The file must contain an abundance value for each optical depth. There must be no blanks following the '-' or the new abundances |
90 12000.0 4.000 0.07833 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1.017E-05 2.8840E-06 0.6839 -1.3282 -0.9954 24.2253 .... 1.232E-05 3.5043E-06 0.6814 -1.2464 -0.9123 24.2255 .... 1.498E-05 4.2581E-06 0.6783 -1.1628 -0.8274 24.2250 .... 1.820E-05 5.1739E-06 0.6747 -1.0794 -0.7430 24.2238 .... 2.209E-05 6.2868E-06 0.6707 -0.9962 -0.6589 24.2217 .... 2.679E-05 7.6390E-06 0.6664 -0.9132 -0.5750 24.2188 .... 3.246E-05 9.2820E-06 0.6619 -0.8305 -0.4917 24.2151 .... 3.929E-05 1.1278E-05 0.6573 -0.7482 -0.4089 24.2105 .... 4.749E-05 1.3704E-05 0.6526 -0.6664 -0.3266 24.2049 .... 5.731E-05 1.6652E-05 0.6480 -0.5853 -0.2450 24.1984 .... 6.905E-05 2.0233E-05 0.6432 -0.5047 -0.1641 24.1909 .... ...... |
M_dep T_eff, log_g, He rho_x,
tau, theta, |
M_dep
|
Number
of depth points M_dep must be negative if there are no columns with H and He number densities M_dep must be positive if there are these columns effective temperature logarithm of gravity He abundance (by number) column mass optical depth at 5000 A reciprocal temperature 5040 / T logarithm of electron pressure logarithm of gas pressure scaled logarithm of continuous opacity at 5000 A |
4290.219
22.01 -0.930 1.165
1.5 4.054 2.5 1.74
1.37 1.09 8.461 -6.665 -7.915 d3
a4P (3F)4p z4D 4563.761 22.01 -0.790 1.221 0.5 3.937 1.5 0.66 0.92 0.99 8.217 -6.713 -7.961 d3 a2P (3F)4p z2D 4558.650 24.01 -0.449 4.073 4.5 6.792 3.5 1.33 1.43 1.16 8.410 -6.638 -7.963 1|4F3) 1 4588.199 24.01 -0.627 4.071 3.5 6.773 2.5 1.24 1.38 1.06 8.410 -6.656 -7.963 1|4F3) 1 4824.127 24.01 -0.970 3.871 4.5 6.440 4.5 1.34 1.34 1.34 8.407 -6.631 -7.934 2|3F4)4F 1 4583.837 26.01 -1.860 2.807 4.5 5.511 3.5 1.31 1.40 1.14 8.615 -6.666 -7.946 2|3F4)4F 1 4923.927 26.01 -1.320 2.891 2.5 5.408 1.5 2.00 2.40 1.69 8.489 -6.583 -7.914 3|6S5)6S 1 5018.440 26.01 -1.220 2.891 2.5 5.361 2.5 2.00 1.87 1.93 8.486 -6.585 -7.914 3|6S5)6S 1 5169.033 26.01 -1.303 2.891 2.5 5.289 3.5 2.00 1.70 1.33 8.484 -6.588 -7.914 3|6S5)6S 1 |
Alam0
Isym Algf Chi_low J_low Chi_up
J_up g_low g_up g_eff Rad
Alc4 Alc6 Dummy_string |
Alam0 Isym Algf Chi_low J_low Chi_up J_up g_low g_up g_eff Rad Alc4 Alc6 Dummy_string |
wavelength element symbol oscillator strength log_gf excitation potential of lower level J value of lower level excitation potential of upper level J value of upper level Lande factor of lower level (99.00 means unknown) Lande factor of upper level (99.00 means unknown) "effective" Lande factor (99.00 means unknown) radiation damping constant (0.000 means unknown) constant for Stark effect (0.000 means unknown) constant for van der Waals broadening (0.000 means unknown) extra information on transition |
4563.761 Ti 2 5.020
-0.790 1.221 0.5 1.5
0.66 0.92 0.99 1.648
15.551 31.415 2.976E+01 4558.650 Cr 2 5.670 -0.449 4.073 4.5 3.5 1.33 1.43 1.16 2.570 15.438 31.420 1.319E+02 4923.927 Fe 2 7.500 -1.320 2.891 2.5 1.5 2.00 2.40 1.70 3.083 15.355 31.297 2.129E+03 |
Stift's adaptive grid
The idea for an adaptive spatial integration grid for stellar line profiles subject to rotational and/or pulsational broadening, with or without large-scale magnetic fields, has been first presented by M.J. Stift, MNRAS 217, 55 (1985). A detailed presentation of the underlying philosophy and application to a variety of problems can be found in R.M. Fensl, A&AS 112, 191 (1995).
In short, Stift's scheme ensures that the differences in monochromatic opacity between any 2 adjacent spatial quadrature points on the stellar disk do not exceed some fixed percentage. This makes it possible to employ robust integration algorithms without sacrificing accuracy.
Landstreet's constant grid
Some (most?) users will prefer to use a grid that is not quite as efficient and sophisticated, but much easier to handle. It is based on a simple recipe given by J. Landstreet and provides equidistant annuli, with the number of quadrature points on each annulus strictly proportional to its radius.
Back to the cossam_slc page |